A Parametric Attributed Scattering Center Model for SAR Automatic Target Recognition

نویسندگان

  • Randolph L Moses
  • Lee C Potter
  • Hung Chih Chiang
  • Michael A Koets
  • Ashutosh Sabharwal
چکیده

We present a parametric attributed scattering model for Synthetic Aperture Radar imagery The model characterizes both frequency and aspect dependence of scattering centers We present algorithms for estimating the model pa rameters from SAR image chips and propose model order estimation algorithms that exploit nested model structures We develop a Bayes classi er for the extracted model parameters the classi er uses uncertainty in both extracted and predicted features Numerical results on synthetic and measured SAR data validate the model and show encouraging results in both the ability to accurately extract scattering at tributes and the utility of these attributes for improved discriminability of target classes

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATR Performance Prediction Using Attributed Scattering Features

We present a method for estimating classi cation performance of a model-based synthetic aperture radar (SAR) automatic target recognition (ATR) system. Target classi cation is performed by comparing a feature vector extracted from a measured SAR image chip with a feature vector predicted from a hypothesized target class and pose. The feature vectors are matched using a Bayes likelihood metric t...

متن کامل

Performance Estimation of Model-Based Automatic Target Recognition Using Attributed Scattering Center Features

We present a model for classification performance estimation for synthetic aperture radar (SAR) automatic target recognition. We adopt a model-based approach, in which classification is performed by comparing a feature vector extracted from a measured SAR image chip with a feature vector predicted from a hypothesized target class and pose. The feature vectors are compared using a Bayes likeliho...

متن کامل

Attributed Scattering Centers for SAR ATR - Image Processing, IEEE Transactions on

High-frequency radar measurements of man-made targets are dominated by returns from isolated scattering centers, such as corners and flat plates. Characterizing the features of these scattering centers provides a parsimonious, physically relevant signal representation for use in automatic target recognition (ATR). In this paper, we present a framework for feature extraction predicated on parame...

متن کامل

Feature Extraction using Attributed Scattering Center Models on SAR Imagery

We present algorithms for feature extraction from complex SAR imagery. The features parameterize an attributed scattering center model that describes both frequency and aspect dependence of scattering centers on the target. The scattering attributes extend the widely-used point scattering model, and characterize physical properties of the scattering object. We present two feature extraction alg...

متن کامل

Classification Performance Prediction Using Parametric Scattering Feature Models

We consider a method for estimating classification performance of a model-based synthetic aperture radar (SAR) automatic target recognition system. Target classification is performed by comparing an unordered feature set extracted from a measured SAR image chip with an unordered feature set predicted from a hypothesized target class and pose. A Bayes likelihood metric that incorporates uncertai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998